dany wrote:
#63Robert, how apply your theorems for these positions?
- Click Here To Show Diagram Code
[go]$$ Black to move. a = -23; b = -22
$$ +---------------------------------+
$$ | O . X X . . b . X . X X X X X X |
$$ | O O . O X . O a O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O O |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$ Black to move. a = -23; b = -24
$$ +---------------------------------+
$$ | O . X X . . b . X . X X X X X X |
$$ | O O . O X . O a O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O X |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
Code:
C:= {0|-11}; D2:= {0|-2}; T2:= C + D2; D4:= {0|-4}; T4:= C + D4
It's funny that T2 and T4 temperatures are the same, but we get different best moves.
Code:
> T2.Temperature
11/2
> T4.Temperature
11/2
Are T2 and T4 Temperature Regions?
Since you have not clarified yet, let me guess what you might mean. I think that probably you mean:
- late endgame
- you do not know how to use the word temperature well, wherefore I reply with how I use it: the ambient temperature, that is, the largest move value in the environment
During the late endgame the creator and preventer have different theorems. With Black to move, only the theorems for him as the creator might apply. However, for a local endgame with gote and sente options and the late endgame, the theorems of Bill Spight and me are inapplicable because they presume single plays a) in the gote option, b) in the opponent's sequence, c) for the initial sente option's play and d) for the alternating reply in the sente option. If we try application of theorems nevertheless, it is luck whether they suggest the right answers. (For local endgames without options, the related theorems are more tolerant to long sequences.)
There are theorems for move values and theorems for counts. For a local endgame with gote and sente options and the late endgame, the theorems for move values must not be applied here. The theorems for counts have a greater chance of correctness despite long sequences especially those started by the creator because the theorems prescribe the beginnings of different sequences in the definitions of the counts to be considered. For the creator, we need definition 37,
"Let there by the resulting counts C1 if the creator starts in the environment and the preventer replies locally, C2 if the creator starts locally with the gote option, C3 if the creator starts locally with the sente option." [22],
the remark
"Determination of the correct first move is the only purpose of the test sequences resulting in these counts" [22]
and theorem 128 for any (low or high) temperature,
"The creator starts
- in the environment if C1 ≥ C2, C3,
- locally with the gote option if C2 ≥ C1, C3,
- locally with the sente option if C3 ≥ C1, C2." [22]
Bill Spight suggested the conceptual idea for such a theorem, which I created and proved.
Now, let us try whether we are lucky and the theorem produces the right answer despite long sequences and any remaining basic endgame ko. I end the sequences before playing it out if it occurs and assign its count -1/3 then.
Your first example:
- Click Here To Show Diagram Code
[go]$$B Black to move
$$ +---------------------------------+
$$ | O . X X . . . . X . X X X X X X |
$$ | O O . O X . O . O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O O |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B start in the environment, C1 = -23 1/3
$$ +---------------------------------+
$$ | O C B B C C C 2 X . X X X X X X |
$$ | O O C O B C O C O X X X . X O 3 |
$$ | . O O O C O O B O X . X , X O X |
$$ | . O . O O O C B O X . X X X O O |
$$ | . O X X X O B B O X . X X O O O |
$$ | . O X X 1 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B local start with the gote option, C2 = -23
$$ +---------------------------------+
$$ | O C B B C C 2 3 X . X X X X X X |
$$ | O O C O B C O 1 O X X X . X O 5 |
$$ | . O O O C O O X O X . X , X O X |
$$ | . O C O O O . X O X . X X X O O |
$$ | . O B B B O X X O X . X X O O O |
$$ | . O B B 4 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B local start with the sente option, correct choice on move 4, C3 = -22
$$ +---------------------------------+
$$ | O . X X . 5 1 3 X . X X X X X X |
$$ | O O . O X . O 2 O X X X . X O 6 |
$$ | . O O O . O O B O X . X , X O B |
$$ | . O C O O O C B O X . X X X O O |
$$ | . O B B B O B B O X . X X O O O |
$$ | . O B B 4 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
The theorem correctly suggests that the creator starts locally with the sente option if C3 ≥ C1, C2 <=> -22 ≥ -23 1/3, -23:
- Click Here To Show Diagram Code
[go]$$B Black's suggested correct start according to the theorem
$$ +---------------------------------+
$$ | O . X X . . 1 3 X . X X X X X X |
$$ | O O . O X . O 2 O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O O |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
Unlike the theorem for only the first move, I interpret its informal application for the first three moves.
Your second example:
- Click Here To Show Diagram Code
[go]$$B Black to move
$$ +---------------------------------+
$$ | O . X X . . . . X . X X X X X X |
$$ | O O . O X . O . O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O X |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B start in the environment, C1 = -23 1/3
$$ +---------------------------------+
$$ | O C B B C C C 2 X . X X X X X X |
$$ | O O C O B C O C O X X X . X O 3 |
$$ | . O O O C O O B O X . X , X O X |
$$ | . O . O O O C B O X . X X X O X |
$$ | . O X X X O B B O X . X X O O O |
$$ | . O X X 1 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B local start with the gote option, C2 = -23
$$ +---------------------------------+
$$ | O C B B C C 2 3 X . X X X X X X |
$$ | O O C O B C O 1 O X X X . X O 5 |
$$ | . O O O C O O X O X . X , X O X |
$$ | . O C O O O . X O X . X X X O X |
$$ | . O B B B O X X O X . X X O O O |
$$ | . O B B 4 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B local start with the sente option, correct choice on move 4, C3 = -24
$$ +---------------------------------+
$$ | O . X X . 5 1 3 X . X X X X X X |
$$ | O O . O X . O 2 O X X X . X O 6 |
$$ | . O O O . O O B O X . X , X O B |
$$ | . O C O O O C B O X . X X X O B |
$$ | . O B B B O B B O X . X X O O O |
$$ | . O B B 4 O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
The theorem correctly suggests that the creator starts locally with the gote option if C2 ≥ C1, C3 <=> -23 ≥ -23 1/3, -24:
- Click Here To Show Diagram Code
[go]$$B Black's suggested correct start according to the theorem
$$ +---------------------------------+
$$ | O . X X . . 2 3 X . X X X X X X |
$$ | O O . O X . O 1 O X X X . X O . |
$$ | . O O O . O O X O X . X , X O X |
$$ | . O . O O O . X O X . X X X O X |
$$ | . O X X X O X X O X . X X O O O |
$$ | . O X X . O O O O X . X X O . O |
$$ | O O O O X X X X X X X X X O O . |
$$ +---------------------------------+[/go]
Unlike the theorem for only the first move, I interpret its informal application for the first three moves.
Note that your only two counts per example in both examples overlooks the possibility of Black's start in the environment. My theorem also takes it into account.
Furthermore, note how we have been lucky with the theorem because accidentally move 3 of the gote option is correct. The definition and theorem do not consider branching at that moment. This is the danger of long sequences.
EDIT: added last paragraph.