Case number 1:
- Click Here To Show Diagram Code
[go]$$B 1.A simple ko situation
$$ +-------------------+
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . , . . |
$$ | . . . . . . . . . |
$$ | . . . . , . . . . |
$$ | X X X X . . . . . |
$$ | O O O X X . , . . |
$$ | . O . O X X . . . |
$$ | . O O . O X . . . |
$$ +-------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B 2.ko is taken
$$ +-------------------+
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . , . . |
$$ | . . . . . . . . . |
$$ | . . . . , . . . . |
$$ | X X X X . . . . . |
$$ | O O O X X . , . . |
$$ | . O . O X X . . . |
$$ | . O O 1 . X . . . |
$$ +-------------------+[/go]
Obviously, retaking now cannot happen under my rule, because an earlier position would be revisited.
- Click Here To Show Diagram Code
[go]$$B 3.ko is retaken
$$ +-------------------+
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . 2 . . |
$$ | . . . . . . 3 . . |
$$ | . . . . , . . . . |
$$ | X X X X . . . . . |
$$ | O O O X X . , . . |
$$ | . O . O X X . . . |
$$ | . O O . 4 X . . . |
$$ +-------------------+[/go]
Playing some stones elsewhere allows it to be retaken, because this position is not the same as diagram 1.
That takes care of the simplest case.
Case number 2:
- Click Here To Show Diagram Code
[go]$$B 4.seki
$$ +-------------------+
$$ | X O X . X . X . O |
$$ | X O X X X X O O . |
$$ | X O O O O O O O O |
$$ | X X X X X X X X X |
$$ | . . . . , . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . , . . |
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ +-------------------+[/go]
- Click Here To Show Diagram Code
[go]$$B 5.
$$ +-------------------+
$$ | X O X . X . X 1 O |
$$ | X O X X X X O O . |
$$ | X O O O O O O O O |
$$ | X X X X X X X X X |
$$ | . . . . , . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . , . . |
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ +-------------------+[/go]
this is just silly in real life, but we're in theory here.
- Click Here To Show Diagram Code
[go]$$B 6.
$$ +-------------------+
$$ | X O X . X 2 a . O |
$$ | X O X X X X O O . |
$$ | X O O O O O O O O |
$$ | X X X X X X X X X |
$$ | . . . . , . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . , . . |
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ +-------------------+[/go]
Black cannot play at a, because that recreates diagram 4.
- Click Here To Show Diagram Code
[go]$$B 7.
$$ +-------------------+
$$ | X O X . X 2 5 . O |
$$ | X O X X X X O O . |
$$ | X O O O O O O O O |
$$ | X X X X X X X X X |
$$ | . . . . , . . . . |
$$ | . . . . . . . . . |
$$ | . . , . . . 3 4 . |
$$ | . . . . . . . . . |
$$ | . . . . . . . . . |
$$ +-------------------+[/go]
Black can play 5, because diagram 4 is not recreated.
I explicitly refuse to consider including things like how many captures there are, whose turn it is or other game state data which you cannot see expressed on the board's intersections.
I think adding such details just makes my idea overcomplicated and unfit for purpose.
That also means there are no special cases which need special descriptions. I would like to see some complicated cases, where my idea actually affects the outcome.
Especially if the changed outcome is perceived as less fair somehow.