It is currently Sun May 04, 2025 12:37 pm

All times are UTC - 8 hours [ DST ]




Post new topic Reply to topic  [ 32 posts ]  Go to page 1, 2  Next
Author Message
Offline
 Post subject: How can a definition be false?
Post #1 Posted: Mon Dec 22, 2014 11:23 am 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
Reference: viewtopic.php?p=179105#p179105

vier wrote:
How can a definition be false?


Instead of "false", one speaks of "not well-defined". The ko definition http://home.snafu.de/jasiek/ko.pdf would be not well-defined if at least one example in line with the used methodology exists that a) is a ko while the definition says it is not a ko or b) is not a ko while the definition says it is a ko.

The paper shows samples of all known repetitive shape classes, with a few known exceptions, for which verification that the definition works well should be straightforward if somebody spends the time to check. For final knowledge, one must 1) discover new repetitive shape classes and find some such class where the definition does not fit or 2) classify all possible shapes into shape classes to identify all possible forced-repetitive classes or detect that no further exist.

However, look at the last condition of global-ko-intersection and perceive how close to the final solution my definition must be! If anything, I would search for a possibly wrongly calibrated minor condition. Happy hunting, but, for each changed definition, do not forget to test and positively check at least all the examples and negatively check at least all the counter-examples I have tested!

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #2 Posted: Mon Dec 22, 2014 11:31 am 
Gosei
User avatar

Posts: 1585
Location: Barcelona, Spain (GMT+1)
Liked others: 577
Was liked: 298
Rank: KGS 5k
KGS: RBerenguel
Tygem: rberenguel
Wbaduk: JohnKeats
Kaya handle: RBerenguel
Online playing schedule: KGS on Saturday I use to be online, but I can be if needed from 20-23 GMT+1
RobertJasiek wrote:
Reference: http://www.lifein19x19.com/forum/viewto ... 05#p179105

vier wrote:
How can a definition be false?


Instead of "false", one speaks of "not well-defined". The ko definition http://home.snafu.de/jasiek/ko.pdf would be not well-defined if at least one example in line with the used methodology exists that a) is a ko while the definition says it is not a ko or b) is not a ko while the definition says it is a ko.

The paper shows samples of all known repetitive shape classes, with a few known exceptions, for which verification that the definition works well should be straightforward if somebody spends the time to check. For final knowledge, one must 1) discover new repetitive shape classes and find some such class where the definition does not fit or 2) classify all possible shapes into shape classes to identify all possible forced-repetitive classes or detect that no further exist.

However, look at the last condition of global-ko-intersection and perceive how close to the final solution my definition must be! If anything, I would search for a possibly wrongly calibrated minor condition. Happy hunting, but, for each changed definition, do not forget to test and positively check at least all the examples and negatively check at least all the counter-examples I have tested!


IIRC we've had this discussion on terminology in the past, but just for completeness I'll state it here again. A definition is always well-defined. It's a definition. If a definition is false, then it is not a definition. If I formally define a chair to be a frog, the chair is a frog. and it is true in the scope of my work. My work may bear no connection with the frogness of the chair, but it doesn't mean the definition is false, because it is not.

From your description (I read your ko definition a long time ago but don't remember it right now and don't want to read it again... it wasn't specially appealing,) you don't have a definition.

Definition: We'll call a situation satisfying

  • Hypothesis 1: blabla
  • Hypothesis 2: blablabla
  • ... Hypothesis N: blabla...bla

a ko.

This is a definition, and it is true, in any instance we'll call *that* a ko. Just like the chair will be called a frog even if it doesn't jump!

_________________
Geek of all trades, master of none: the motto for my blog mostlymaths.net

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #3 Posted: Mon Dec 22, 2014 11:53 am 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
It seems like you have not studied maths at the FU Berlin:) A definition itself was not considered well-defined because of being a definition. It was considered well-defined if it fulfilled its intention in the given framework.

The given framework for a definition of ko is the set of all known relevant examples and counter-examples and the related understanding of what ko is about.

If you think that any definition of ko could be stated, state a second definition, prove that it is unequal to my definition and prove by application that it distinguishes examples from counter-examples as well as my definition. You cannot define "a ko is a chair but not a frog" and claim to have a well-defined definition, because you cannot successfully apply it to the known examples.

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #4 Posted: Mon Dec 22, 2014 12:18 pm 
Lives in gote
User avatar

Posts: 314
Location: Germany
Liked others: 10
Was liked: 128
Rank: KGS 4k
RBerenguel wrote:
A definition is always well-defined.

Exhibit A:
Quote:
The smallest positive integer not definable in under eleven words.

Quote:
The set of all sets that are not members of themselves.


Not to mention pink invisible unicorns!

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #5 Posted: Mon Dec 22, 2014 12:23 pm 
Gosei
User avatar

Posts: 1585
Location: Barcelona, Spain (GMT+1)
Liked others: 577
Was liked: 298
Rank: KGS 5k
KGS: RBerenguel
Tygem: rberenguel
Wbaduk: JohnKeats
Kaya handle: RBerenguel
Online playing schedule: KGS on Saturday I use to be online, but I can be if needed from 20-23 GMT+1
RobertJasiek wrote:
It seems like you have not studied maths at the FU Berlin:) A definition itself was not considered well-defined because of being a definition. It was considered well-defined if it fulfilled its intention in the given framework.

The given framework for a definition of ko is the set of all known relevant examples and counter-examples and the related understanding of what ko is about.

If you think that any definition of ko could be stated, state a second definition, prove that it is unequal to my definition and prove by application that it distinguishes examples from counter-examples as well as my definition. You cannot define "a ko is a chair but not a frog" and claim to have a well-defined definition, because you cannot successfully apply it to the known examples.


Nope, I didn't, my German is not good enough for it :D In my university, most (I can't put my hand on all I have read, since my memory is not *that* good) math and papers I have read, a definition is essentially a labelling of something with a name. It can be something with a set of hypothesis on how it behaves, or the properties it has.

The only instance when I call something well-defined or ill-defined is with mappings/applications/functions, where you have to actually check the definition of a function (from one space to another) satisfies the constraints of the source and target spaces.

Some reference is always useful.

Russell & Whitehead, Principia Mathematica wrote:
Definitions. A definition is a declaration that a certain newly-introduced
symbol or combination of symbols is to mean the same as a certain other
combination of symbols of which the meaning is already known. Or, if the
defining combination of symbols is one which only acquires meaning when
combined in a suitable manner with other symbols*, what is meant is that
any combination of symbols in which the newly-defined symbol or combination
of symbols occurs is to have that meaning (if any) which results from substi-
tuting the defining combination of symbols for the newly-defined symbol or
combination of symbols wherever the latter occurs.

_________________
Geek of all trades, master of none: the motto for my blog mostlymaths.net

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #6 Posted: Mon Dec 22, 2014 12:25 pm 
Gosei
User avatar

Posts: 1585
Location: Barcelona, Spain (GMT+1)
Liked others: 577
Was liked: 298
Rank: KGS 5k
KGS: RBerenguel
Tygem: rberenguel
Wbaduk: JohnKeats
Kaya handle: RBerenguel
Online playing schedule: KGS on Saturday I use to be online, but I can be if needed from 20-23 GMT+1
Quote:
The smallest positive integer not definable in under eleven words.


This is an object (an integer). Can or cannot exist, but we can define it.

Quote:
The set of all sets that are not members of themselves.


This is a set which is not a set... and the contradiction can be shaved with class theory instead. It's not a "definition" in the mathematically assumed sense (see my quote above.)

_________________
Geek of all trades, master of none: the motto for my blog mostlymaths.net

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #7 Posted: Mon Dec 22, 2014 12:33 pm 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
http://de.wikipedia.org/wiki/Wohldefiniertheit
http://en.wikipedia.org/wiki/Well-defined

Not surprisingly, the German page has the kind of well-definedness I need:

"Eine Menge ist wohldefiniert, wenn das Definiens für jedes beliebige Objekt eindeutig festlegt, dass es entweder Element der Menge ist oder nicht Element der Menge ist."

Translation:

"A set is well-defined if the definition specifies unequivocally for each arbitrary object that it is either element of the set or not element of the set."

Here, the considered implied set is the set of all objects that are 'ko', where objects can be parts of go positions.

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #8 Posted: Mon Dec 22, 2014 12:51 pm 
Lives in gote
User avatar

Posts: 314
Location: Germany
Liked others: 10
Was liked: 128
Rank: KGS 4k
Quote:
A set is well-defined if the definition specifies unequivocally for each arbitrary object that it is either element of the set or not element of the set.

Thus the definition
Quote:
A "ko" shall be defined to be any kind of frog.

is perfectly well-defined (assuming biology is clear enough on what constitutes and doesn't constitute a frog).

I agree that you're somewhat misusing the word "definition". Whether or not your definition captures colloquial usage of the term you're (re)defining is quite irrelevant to the definition itself.

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #9 Posted: Mon Dec 22, 2014 12:52 pm 
Gosei
User avatar

Posts: 1585
Location: Barcelona, Spain (GMT+1)
Liked others: 577
Was liked: 298
Rank: KGS 5k
KGS: RBerenguel
Tygem: rberenguel
Wbaduk: JohnKeats
Kaya handle: RBerenguel
Online playing schedule: KGS on Saturday I use to be online, but I can be if needed from 20-23 GMT+1
RobertJasiek wrote:
http://de.wikipedia.org/wiki/Wohldefiniertheit
http://en.wikipedia.org/wiki/Well-defined

Not surprisingly, the German page has the kind of well-definedness I need:

"Eine Menge ist wohldefiniert, wenn das Definiens für jedes beliebige Objekt eindeutig festlegt, dass es entweder Element der Menge ist oder nicht Element der Menge ist."

Translation:

"A set is well-defined if the definition specifies unequivocally for each arbitrary object that it is either element of the set or not element of the set."

Here, the considered implied set is the set of all objects that are 'ko', where objects can be parts of go positions.


Robert, this is exactly like the example of well-definedness I explained above. This does not apply to a "definition," as in the proper usage of \begin{definition} you'd use in a paper or book. A definition is a enumeration of properties something satisfies (or not.) and which may exist, or not. What you are quoting is well-definedness, and is about *sets* (and thus extends to functions, or a specific function and a wide array of things.)

This is mainly (in my field) used in "let f:some_set to another_set" (this "let" is an informal definition since it's usually "local" and thus doesn't need a proper name but just a dummy name.) Then, "lemma: f is well-defined" when you check it actually satisfies the set constraints. Nothing prevents it from being *defined* since defining something doesn't mean it exists or makes sense (or is *well-defined*).

_________________
Geek of all trades, master of none: the motto for my blog mostlymaths.net

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #10 Posted: Mon Dec 22, 2014 12:55 pm 
Gosei
User avatar

Posts: 1585
Location: Barcelona, Spain (GMT+1)
Liked others: 577
Was liked: 298
Rank: KGS 5k
KGS: RBerenguel
Tygem: rberenguel
Wbaduk: JohnKeats
Kaya handle: RBerenguel
Online playing schedule: KGS on Saturday I use to be online, but I can be if needed from 20-23 GMT+1
leichtloeslich wrote:
Quote:
A set is well-defined if the definition specifies unequivocally for each arbitrary object that it is either element of the set or not element of the set.

Thus the definition
Quote:
A "ko" shall be defined to be any kind of frog.

is perfectly well-defined (assuming biology is clear enough on what constitutes and doesn't constitute a frog).

I agree that you're somewhat misusing the word "definition". Whether or not your definition captures colloquial usage of the term you're (re)defining is quite irrelevant to the definition itself.


Exactly! The problem is connecting real-world usage with the proper sense of definition. Also, we can perfectly define pink flying unicorns. Actually:

Definition: We'll call P the set of pink flying unicorns.

Perfectly well defined, as in "this is a definition, since it uses known properties and assigns them a name for later".

Lemma: The set P is empty.

I'll leave the proof to the reader.

_________________
Geek of all trades, master of none: the motto for my blog mostlymaths.net

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #11 Posted: Mon Dec 22, 2014 1:08 pm 
Lives in gote
User avatar

Posts: 314
Location: Germany
Liked others: 10
Was liked: 128
Rank: KGS 4k
RBerenguel wrote:
This does not apply to a "definition,"

Wait, so you're actually nitpicking that the object of a definition may or may not be well-defined, but never the definition itself?

Seems like an irrelevant language-usage point, but nevertheless.. challenge accepted!

Let me just do some horrible things to Berry's paradox.. and voila:
Quote:
The shortest definition of the empty set that is not definable in under sixteen words.

So here the object of our definition is itself a definition, but this definition isn't well-defined because the defining meta-definition definitely defines this very definition, which was supposed to be un-definable in under 16 words, in just 15 words!

edit: miscounted the number of words by 1 :[

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #12 Posted: Mon Dec 22, 2014 1:46 pm 
Oza

Posts: 2180
Location: ʍoquıɐɹ ǝɥʇ ɹǝʌo 'ǝɹǝɥʍǝɯos
Liked others: 237
Was liked: 662
Rank: AGA 5d
GD Posts: 4312
Online playing schedule: Every tenth February 29th from 20:00-20:01 (if time permits)
How can anyone write 46 pages on the definition of a ko and expect to be taken seriously? I know what a ko is and so does every other player with more than minimal experience. It does not take 46 pages. In my opinion, that fact alone means your arguments lose all credibility.

_________________
Still officially AGA 5d but I play so irregularly these days that I am probably only 3d or 4d over the board (but hopefully still 5d in terms of knowledge, theory and the ability to contribute).

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #13 Posted: Mon Dec 22, 2014 1:54 pm 
Lives in gote
User avatar

Posts: 314
Location: Germany
Liked others: 10
Was liked: 128
Rank: KGS 4k
DrStrawman wrote:
In my opinion, that fact alone means your arguments lose all credibility.

... said the gent who bases vital parts of his beliefs about reality on anecdotes involving his cat!

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #14 Posted: Mon Dec 22, 2014 2:09 pm 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
leichtloeslich, "A "ko" shall be defined to be any kind of frog." is well-defined in a weak sense of defining a term by using (presumably) defined other terms, but not well-defined in a stricter sense because the word "ko" is abused. Call it "all_kinds_of_frog" and there is no ambiguity WRT the intention of "ko".

RBerenguel, given my definition of "ko" and given the known examples informally called 'ko'. Proposition of well-definedness of my definition: "a) Each example has a "ko" according to my definition on exactly the intersections informally perceived to belong to the ko. b) None of the intersections in each counter-example has a "ko" according to my definition." Currently the proposition is proven empirically on the high definition level (not strictly on the low level of left-parts of strategies).

I agree that the problem is connecting real-world usage with the proper sense of definition. It is like doing maths as a physicist. Until we have checked each example in the universe (e.g., each point of the time-space of the universe), we cannot be absolutely sure that the general theory of relativity always applies. We can only say that it always applies on the non-quantum scale in each example experiment ever done. Proving the ko proposition is easier because the space of all subsets of all positions is much smaller. Currently the proof is only partial for all known (classes of) examples.

In the strongest sense of well-definedness, the proposition will be proven in general or rejected by at least one counter-example to the proposition.

DrStraw, do not forget the 13.5 years needed to write those 46 pages; how can anybody be taken seriously needing so long to define ko when it is something that can be understood within seconds?;) What can be understood within seconds is basic-ko. Long cycle kos are much more difficult to understand. Anyway, I do not expect to be taken seriously by people resorting to meta-discussion instead of discussion of what is written in the paper.

You claim to know what a ko is and that every player would know it. You (or anybody), since you know it, write it down, apply your writing and check it for the examples in my paper. Does your definition identify exactly those examples and same-shape examples in arbitrary other positions? We will see. Credibility is measured by the success of identifying such examples in a re-producable manner. This requires sharing knowledge explicitly (such as in writing); a mere claim (by you) to just know what ko is lacks the possibility for re-production by others. Credibility is also measured by this possibility. (BTW, of course, you are not even impressed that finding some of those examples took many years of thinking. If you really did know what ko is, you would have told us about those ko shapes long before we researchers found them.)

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #15 Posted: Mon Dec 22, 2014 2:28 pm 
Gosei
User avatar

Posts: 1639
Location: Ponte Vedra
Liked others: 642
Was liked: 490
Universal go server handle: Bantari
RobertJasiek wrote:
It seems like you have not studied maths at the FU Berlin:) A definition itself was not considered well-defined because of being a definition. It was considered well-defined if it fulfilled its intention in the given framework.

The given framework for a definition of ko is the set of all known relevant examples and counter-examples and the related understanding of what ko is about.

If you think that any definition of ko could be stated, state a second definition, prove that it is unequal to my definition and prove by application that it distinguishes examples from counter-examples as well as my definition. You cannot define "a ko is a chair but not a frog" and claim to have a well-defined definition, because you cannot successfully apply it to the known examples.

The problem with "definition by known examples" is that, like "known examples" themselves, it is more of a hypothesis. We can never be sure that "all possible examples" and "known examples" are the same set.

And anyways, how do you define which examples are KO and which are not, if you don't have a definition? How do you determine the set of "known examples"? It seems to me that you must already have a definition, explicit or implicit, or you would not be able to differentiate between KO and non-KO examples. So all you are trying to do is to find another wording for it, but still make it equivalent to the other definition.

So in general, I agree with RBerenguel that a definition is what defines a set or condition.
If the set or condition is not what you had in mind, this makes the definition possibly inappropriate, but not necessarily wrong. It just defines a different set or condition that you wanted. Maybe its your "want" that is wrong? ;)

_________________
- Bantari
______________________________________________
WARNING: This post might contain Opinions!!


This post by Bantari was liked by: RBerenguel
Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #16 Posted: Mon Dec 22, 2014 2:46 pm 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
Indeed, it is an open question if "all possible examples" and "known examples" are the same set. It is not quite so tough because examples fall into shape classes, which fall into classes of same cyclic behaviours. Nevertheless, until all possible shape classes will be revealed, it is an ongoing research field with the possibility of a need for updating the ko definition.

Currently, for the first time in history, the current definition is more powerful than our shape knowledge. Prior to my definition, we had not understood the common aspects of all know shapes well, except in an informal sense of "for some unclear reason being worth fighting about avoiding repetition".

Without definition destinguishing ko examples from examples that are not ko is done by appoximative understanding of what is - currently or possibly later during a game - for some unclear reason being worth fighting about avoiding repetition. Such comes from imagining representative ko fights happening about the shapes assumed to be ko. If there are examples for such ko fights in certain conceivable positional contexts, we perceive the thing as a ko. So this is a sort of (still ambiguous) implicit definition.

EDITED

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #17 Posted: Mon Dec 22, 2014 3:31 pm 
Lives in sente
User avatar

Posts: 844
Liked others: 180
Was liked: 151
Rank: 3d
GD Posts: 422
KGS: komi
This thread seems to be about the interpretation of the English word "definition." Robert, since you've already compared your work to the general theory of relativity, why not call it a theory of ko, rather than a definition of ko?

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #18 Posted: Mon Dec 22, 2014 7:13 pm 
Judan

Posts: 6269
Liked others: 0
Was liked: 796
Currently, the definition is the most important part of the theory. The theory can, in principle, be expanded by a complete classification of all shapes / positions / sequences and proving the sketched proposition. This is a research topic for the following decades or centuries to complete the theory of ko.

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #19 Posted: Thu Jan 08, 2015 7:17 am 
Lives in gote

Posts: 309
Liked others: 3
Was liked: 41
Rank: 5 dan
I remember seeing a shape where a group of five stones gets repeatedly captured.

Top
 Profile  
 
Offline
 Post subject: Re: How can a definition be false?
Post #20 Posted: Thu Jan 08, 2015 10:18 am 
Lives in gote

Posts: 677
Liked others: 6
Was liked: 31
KGS: 2d
All u talking about are issues of convention. There is no definition or well-define-ness in itself. You can agree to use those words loosely, strictly, with a teleologic purpose, .... All that matter is: 1) all know what is talked about and 2) the consequences are not absurd or contradictory (because that would render the definition either as false or as a false-maker).

My two cents....

Edit: Sorry, too much investment...gotta substract one cent, thx^^.


Last edited by Pippen on Thu Jan 08, 2015 1:38 pm, edited 1 time in total.
Top
 Profile  
 
Display posts from previous:  Sort by  
Post new topic Reply to topic  [ 32 posts ]  Go to page 1, 2  Next

All times are UTC - 8 hours [ DST ]


Who is online

Users browsing this forum: No registered users and 1 guest


You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot post attachments in this forum

Search for:
Jump to:  
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group