Inkwolf wrote:
Okay, say something like this:
- Click Here To Show Diagram Code
[go]$$c
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . a . . . . b . . |
$$ | . . . O . . . . . , . . . O . O . . . |
$$ | . . . . . . . . . . . . . . . . O . . |
$$ | . . . . . . . . . . . . . . . X X . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . B . . . |
$$ | . . O . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . e . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . e . W . . |
$$ | . . . . . . . . . . . . . . . . c . . |
$$ | . . . X . . X . . X . . . . . X . e . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ ---------------------------------------[/go]
What would you do next? How do you react to the marked white stone?
As has been mentioned, all invasions are different. White has room to invade here, and can move in any of the directions 'e'. Since white is locally outnumbered, he may also try to play lightly and sacrifice this stone, so that needs to be kept in mind as well. A black play like 'c', already mentioned by anmal, aims to make white heavier and reduce his option of sacrifice, and works well with black's marked stone.
It's definitely a possible invasion and shouldn't be treated as complete overplay. So the first thing is: don't try to get an unreasonable result. You will only feel sad if you thought ahead of time that you were entitled to the entire lower right quadrant or something.
Others have said it is early. I agree. White has a little unfinished business at the top due to his joseki choice, leaving a weakness near 'a' which black can aim at later. The upper right corner 'b' is also open. If black gets stronger through attacking, it is possible to take one of those points or take sente if white defends them, but it depends on how the game develops. If white becomes burdened with a weak group, he could wind up being busy.
So, white's move is suboptimal in theory, but that doesn't mean he deserves to collapse everywhere or that black is entitled to create some unstoppable moyo. White owes a little at the top, and black should not forget that and let white get all the good points.
There is no "containing" this white stone.
Let me show a couple of positions from a couple of professional games, similar locally to the one you have:

Kobayashi Koichi (W) vs. Kurosawa Tadanao, 1971, Moves 18 to 27
- Click Here To Show Diagram Code
[go]$$W Kobayashi Koichi (W) vs. Kurosawa Tadanao, 1971, Moves 18 to 27
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . O . O . . . . . . . . O . . . . |
$$ | . . O , . . . . . , . . O . . , X . . |
$$ | . . O X . . . . . . . . . . . X . . . |
$$ | . . X X . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . 8 . . . . . . . . . . . . . . |
$$ | . . . X 7 9 . . . , . . . . . , . . . |
$$ | . . 6 0 . . . . . . . . . . . . . . . |
$$ | . . . 5 . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . 1 3 . . . . . . . . . . . . . . . |
$$ | . . 2 . . . . . . . . . . . . . O . . |
$$ | . . . X . 4 . . . X . . . . . , . . . |
$$ | . . . . . . . . . . . . . X . O . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ ---------------------------------------[/go]

James Kerwin (W) vs. Inoue Machiko, 1978, Moves 30 to 39
- Click Here To Show Diagram Code
[go]$$W James Kerwin (W) vs. Inoue Machiko, 1978, Moves 30 to 39
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . X O O . . |
$$ | . . . O . . . O . X . . . O X X O . . |
$$ | . . . , . . . . . , . . . . . X O . . |
$$ | . . . O . . . . . X . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . X O . . |
$$ | . . . . . . . . . . . . . . . X O . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . 9 . . . . . 4 . . . |
$$ | . . . O . . . . 8 7 . . . . . . . . . |
$$ | . . O , X X . . . X 0 5 . 3 . X . . . |
$$ | . . . O O X . . . . 6 . . 1 2 . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ ---------------------------------------[/go]
So we can see a kind of middle game joseki here. It's actually the exact same sequence in these two games, although I'm not saying it would go that way in yours! However, the idea is to reduce white's base and create a target for attack. If you have a game database, you can find the whole games and see how they continue for an idea of what to expect. Black's profit from this kind of thing is not always local.
White is entitled to something and black is entitled to something. No reason to panic!