The last ko fight of the Fujisawa Rina (W) - Son Makoto game.
- Click Here To Show Diagram Code
[go]$$Bcm29 Finale, W332 fills ko
$$ ---------------------------------------
$$ | 2 X 3 X . X . X O O O O . . . O O O X |
$$ | B O X X X . X X O O X O O O O O O X 1 |
$$ | O O O X O X X X X X X O X O X O X X X |
$$ | O O O O O O X O O X . O X X X O X X . |
$$ | X O X X O O O O . X O O O O X X X . . |
$$ | X X X O O X O O X X . . X X X X O X . |
$$ | . . . X . X X O O . O O O X O X O X . |
$$ | X X X X X X . X O O O X O O O O O X . |
$$ | O O O O O X . X X O X X X . O O X X . |
$$ | O X X X X X . . . X X O X X X O O X X |
$$ | O O O X X X X X X X . O O O O . . O X |
$$ | O . . O O X O O O X O . . . . . . O X |
$$ | O . O . O X O . O X O O O . . . O . O |
$$ | . O . O . O O O O X O X O . . O O O . |
$$ | . . O . O O X X X O X X O O O O X O O |
$$ | O . . O O O O X . O X X O X O X X X O |
$$ | . O O O X O O X O X X O O X X X . X O |
$$ | O X O X X X X X O X . X O X . . X . X |
$$ | . X X . X . . . X . X X X . . . . X . |
$$ ---------------------------------------[/go]

(add 300) gains ⅓ point (on average), OC.

and

each gain
7/
9 point, and then

gains ⅓ point. The
7/
9 point figure may be new to some players, so let’s explain that.

Counting the captured

stone, after

the local count in the top left corner is -⅔, and after

, which gains ⅓ point, the local score is -1. But suppose that instead White takes the ko at
31 and fills it. Then the local score will be -3. That means that 3 plays gain a total of 2⅓ points, for a average gain of
7/
9 point. There are two kos in this corner, one where each play gains ⅓ point, and one where each play gains
7/
9 point.
So what is the local count of this corner position?
- Click Here To Show Diagram Code
[go]$$Bc Miai
$$ ----------------
$$ | . X . X . X . X
$$ | X O X X X . X X
$$ | O O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
Black has only one best move, and White has only one move, which do not interfere with each other. We may regard them as miai.
- Click Here To Show Diagram Code
[go]$$Bc Miai
$$ ----------------
$$ | W X B X . X . X
$$ | X O X X X . X X
$$ | O O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
Whether Black plays

and then White plays

, or vice versa, the result is the same (except for the ko ban). The original position has the same average value as the resulting position, i.e., -⅔.
- Click Here To Show Diagram Code
[go]$$Bc Black wins ko
$$ ----------------
$$ | 3 X 1 X . X . X
$$ | X O X X X . X X
$$ | O O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]

and

each gain ⅓ point, for a local score of 0.
- Click Here To Show Diagram Code
[go]$$Wc White wins ko
$$ ----------------
$$ | 1 B 3 X . X . X
$$ | X O X X X . X X
$$ | O O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]

fills ko at


,

, and

each gain
7/
9 point, for a local score of -3.
This is one of those (almost) never see sequences in go, because if Black cannot win both kos she can answer

at
3. Since White’s moves gain more than Black’s, it is very likely that White can take the ko with sente, and then win the ⅓ point ko. For Black to win the ko she must have larger ko threats than White needs to have. Also, if Black plays first, the move gains ⅓ point, but does not generate a ko ban, so Black also needs one more ko threat than White in that case, although they do not need to be so large.
Now let’s back the original position up one move by White. How much is this position worth, on average?
- Click Here To Show Diagram Code
[go]$$Bc Miai
$$ ----------------
$$ | . X . X . X . X
$$ | X O X X X . X X
$$ | . O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
This corner position is worth -⅓ point.
- Click Here To Show Diagram Code
[go]$$Bc Miai
$$ ----------------
$$ | . X B X . X . X
$$ | X O X X X . X X
$$ | W O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
We can see this by playing the miai.

Let’s back up the position one more move, by Black. How much is this corner position worth?
- Click Here To Show Diagram Code
[go]$$Bc Earlier position
$$ ----------------
$$ | . X . X . X . X
$$ | . O X X X . X X
$$ | . O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
Well, let’s look at the result if White plays first.
- Click Here To Show Diagram Code
[go]$$Wc White first
$$ ----------------
$$ | . X . X . X . X
$$ | 1 O X X X . X X
$$ | . O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
This position is worth -1, so the previous position is worth -⅔, and each play gains ⅓ point.
- Click Here To Show Diagram Code
[go]$$Bc Possible
$$ ----------------
$$ | 4 X 3 X . X . X
$$ | 1 O X X X . X X
$$ | 2 O O X O X X X
$$ | O O O O O O X O
$$ | X O X X O O O O
$$ | X X X O O X O O
$$ | . . . X . X X O
$$ | X X X X X X . X[/go]
OC, this is one possible sequence of play, with each play gaining ⅓ point.

——
Back to the game.
- Click Here To Show Diagram Code
[go]$$Bcm29 Finale, W332 fills ko
$$ ---------------------------------------
$$ | 2 X 3 X . X . X O O O O . . . O O O X |
$$ | B O X X X . X X O O X O O O O O O X 1 |
$$ | O O O X O X X X X X X O X O X O X X X |
$$ | O O O O O O X O O X . O X X X O X X . |
$$ | X O X X O O O O . X O O O O X X X . . |
$$ | X X X O O X O O X X . . X X X X O X . |
$$ | . . . X . X X O O . O O O X O X O X . |
$$ | X X X X X X . X O O O X O O O O O X . |
$$ | O O O O O X . X X O X X X . O O X X . |
$$ | O X X X X X . . . X X O X X X O O X X |
$$ | O O O X X X X X X X . O O O O . . O X |
$$ | O . . O O X O O O X O . . . . . . O X |
$$ | O . O . O X O . O X O O O . . . O . O |
$$ | . O . O . O O O O X O X O . . O O O . |
$$ | . . O . O O X X X O X X O O O O X O O |
$$ | O . . O O O O X . O X X O X O X X X O |
$$ | . O O O X O O X O X X O O X X X . X O |
$$ | O X O X X X X X O X . X O X . . X . X |
$$ | . X X . X . . . X . X X X . . . . X . |
$$ ---------------------------------------[/go]

at

would also gain ⅓ point, but

is technically correct, because White would then take either ko, resulting in a miai. Each player could then win one ko.

gives Black the possibility of winning both kos. On this board he does not have the ko threats to do that, but he made the technically correct play.

Earlier:
- Click Here To Show Diagram Code
[go]$$Bcm95 W300 takes the ko
$$ ---------------------------------------
$$ | . X . X . X . X O O O O . . . O 2 O 1 |
$$ | 3 O X X X . X X O O X O O O O O O X W |
$$ | . O O X O X X X X X X O X O X O X X X |
$$ | O O O O O O X O . , . O X X X O X X . |
$$ | X O X X O O O O . X O O O O X X X . . |
$$ | X X X O O X O O X X . . X X 5 X O X . |
$$ | . . . X . X X O O . O O O X O X O X . |
$$ | X X X X . X . X O O O X O O 4 O O X . |
$$ | O O O O O X . X X O X X X . O O X X . |
$$ | O X X X . X . . . X X O X X X O O X X |
$$ | O O O X X X X X X X . O O O O . . O X |
$$ | . X X O O X O O O X O . . . . . . O X |
$$ | . X O . O X O . O X O O O . . . . . O |
$$ | . O . O . O O O O X O X O . . O O O . |
$$ | . . . . O O X X X O X X O O O O X O O |
$$ | . . . O O O O X . O X X O X O X X X O |
$$ | . O O O X O O X O X X O O X X X . X O |
$$ | O X O X X X X X . X O X O X . . X . X |
$$ | . X X . X . . . . . . X X . . . . . . |
$$ ---------------------------------------[/go]

(add 200) takes the ko with sente, then switches to the top left corner.

takes away White’s potential eye, which makes

and

a double ko threat. White eliminates that threat and then takes the ko.
- Click Here To Show Diagram Code
[go]$$Wcm100 Sente ko
$$ ---------------------------------------
$$ | 3 X . X . X . X O O O O . . . O O O X |
$$ | X O X X X . X X O O X O O O O O O X 2 |
$$ | 1 O O X O X X X X X X O X O X O X X X |
$$ | O O O O O O X O . , . O X X X O X X . |
$$ | X O X X O O O O . X O O O O X X X . . |
$$ | X X X O O X O O X X . . X X X X O X . |
$$ | . . . X . X X O O . O O O X O X O X . |
$$ | X X X X . X . X O O O X O O O O O X . |
$$ | O O O O O X . X X O X X X . O O X X . |
$$ | O X X X . X . . . X X O X X X O O X X |
$$ | O O O X X X X X X X . O O O O . . O X |
$$ | . X X O O X O O O X O . . . . . . O X |
$$ | . X O . O X O . O X O O O . . . . . O |
$$ | . O . O . O O O O X O X O . . O O O . |
$$ | . . . . O O X X X O X X O O O O X O O |
$$ | . . . O O O O X . O X X O X O X X X O |
$$ | . O O O X O O X O X X O O X X X . X O |
$$ | O X O X X X X X . X O X O X . . X . X |
$$ | . X X . X . . . . . . X X . . . . . . |
$$ ---------------------------------------[/go]
It does not matter on this board, but W300 would have been technically better in the top left corner. To have any hope of winning both kos Black must fill the ko in the top right, but then White gets to play the favorable sente ko in the top left. Black needs larger ko threats than White does.
