Interesting move! I would not claim to understand every variation, but I would guess the idea is to make miai of 'a' and 'b' below
- Click Here To Show Diagram Code
[go]$$W
$$ | . . . . . . . . . . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . O . . . . . O . b . . . , . . . |
$$ | . . . . . X . . . . . X . O . X a . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ +---------------------------------------+[/go]
In the games, black defends the corner, and the result seems OK for both:
- Click Here To Show Diagram Code
[go]$$B
$$ | . . . . . . . . . . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . O . . . . . O 8 2 3 5 1 , . . . |
$$ | . . . . . X . . . . 7 X 4 O . X . . . |
$$ | . . . . . . . . . . 9 6 . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ +---------------------------------------+[/go]
'a' and 'b' are white's sente later. This looks quite good for white, I would say.
- Click Here To Show Diagram Code
[go]$$W
$$ | . . . . . . . . . . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . O . . . . . O O O X X X , . . . |
$$ | . . . . . X . . . 3 X X O O . X . . . |
$$ | . . . . . . . . . 1 X O 2 . . . . . . |
$$ | . . . . . . . . a b . 4 . . . . . . . |
$$ +---------------------------------------+[/go]
If black does not defend the corner then I guess white will invade it. I wonder what variations will follow! Like this, maybe black 1 is overconcentrated?
- Click Here To Show Diagram Code
[go]$$B
$$ | . . . . . . . . . . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . . . 0 . . |
$$ | . . . . . . . . . . . 1 . . . 5 . . . |
$$ | . . . O . . . . . O . . . . . 3 4 . . |
$$ | . . . . . X . . . . . X . O 9 X 2 . . |
$$ | . . . . . . . . . . . . . . 7 6 8 . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ +---------------------------------------+[/go]
... so maybe black should hane - but what follows next?
- Click Here To Show Diagram Code
[go]$$W
$$ | . . . . . . . . . . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . O . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . X . . . . . . . |
$$ | . . . O . . . . . O . . . . . 3 2 . . |
$$ | . . . . . X . . . . . X . O . X 1 . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ +---------------------------------------+[/go]