Coming back to the Lee Sedol position, @MikeKyle - as far as I can tell, it really is a broken ladder situation assuming white tries to resist. Indeed white should give up the ladder right away instead of running. But if white does run, then the correct path for black is to play the full broken ladder, and *not* attempt to simply get a ladder maker the normal way, because White does appear to have a way to fight to keep the lower right corner *and* escape from the upper left ladder, although global judgment also comes into play. Analysis below.
Firstly, black should *not* attempt to establish the ladder maker beforehand:
- Click Here To Show Diagram Code
[go]$$B Too early, white is winning by a lot now
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O . . . . . . . . . . . . . . . |
$$ | . . . 7 . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . 8 . . , . X . |
$$ | . . . . . . . . . . . 6 3 . X . X O . |
$$ | . . . . . . . . . . 5 4 2 X . X . O O |
$$ | . . . . . . . . . . O 1 O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
If black goes for the maker right away, white is happy to let black have it, and take a large advantage in the center.
Black should magnify the ladder at least once. Of course, knowing what's to come, white shouldn't try to escape at all, but that's true of any sufficiently severe ladder tactic, regardless of whether it's a full-broken-ladder tactic or an ordinary maker tactic. So we suppose white resists.
- Click Here To Show Diagram Code
[go]$$B Make ladder bigger
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O 2 . . . . . . . . . . . . . . |
$$ | . . . 1 . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . . . . . X . X O . |
$$ | . . . . . . . . . . . . . X . X . O O |
$$ | . . . . . . . . . . O . O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
Now if black tries this again, white's actually still happy to let black have it, the gain in the center is enough to compensate white to make it still a reasonable game for white:
- Click Here To Show Diagram Code
[go]$$B white still takes the center influence
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O O 7 . . . . . . . . . . . . . |
$$ | . . . X . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . 8 . . , . X . |
$$ | . . . . . . . . . . . 6 3 . X . X O . |
$$ | . . . . . . . . . . 5 4 2 X . X . O O |
$$ | . . . . . . . . . . O 1 O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
So black should make the ladder even bigger first.
- Click Here To Show Diagram Code
[go]$$B Make ladder bigger
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O O 1 . . . . . . . . . . . . . |
$$ | . . . X 2 . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . . . . . X . X O . |
$$ | . . . . . . . . . . . . . X . X . O O |
$$ | . . . . . . . . . . O . O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
Now, we finally see white make a difference choice, since the ladder is big enough! And we get to see how white breaks the ladder *and* saves the lower right.
- Click Here To Show Diagram Code
[go]$$B White's tesuji
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O O X . . . . . . . . . . . . . |
$$ | . . . X O . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . . . 3 . X . X O . |
$$ | . . . . . . . . . 6 5 4 2 X . X . O O |
$$ | . . . . . . . . . . O 1 O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
This atari above at

is the tesuji. Continued:
- Click Here To Show Diagram Code
[go]$$B White manages sente to fix the ladder
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X 4 . . . . . . . . . . . . . |
$$ | . . X O O X . . . . . . . . . . . . . |
$$ | . . . X O . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . 1 . X . X . X O . |
$$ | . . . . . . . . . O X O O X . X . O O |
$$ | . . . . . . . . . 3 O C O X X O O O . |
$$ | . . . . . . . . . . . 2 O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
After black

escapes, the ladder is still broken, so white can capture at

and black now cannot get either the ladder or the lower right due to being out of sente moves. Still, black can get a good position by cutting. Continued further:
- Click Here To Show Diagram Code
[go]$$B Black gets center influence
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X O . . . . . . . . . . . . . |
$$ | . . X O O X . . . . . . . . . . . . . |
$$ | . . . X O . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . X 3 X . X . X O . |
$$ | . . . . . . . . . O X O O X . X . O O |
$$ | . . . . . . . . . X O a O X X O O O . |
$$ | . . . . . . . . . b 1 O O O O . . . O |
$$ | . . O . . . . . . . . X X X X O O . O |
$$ | . . . , . . . . . , . . O . . O O . 4 |
$$ | . . . O . . . . X . . . . X X X O . . |
$$ | . . . . . . . . . . . . . . . . O O . |
$$ | . . . . . . . . . . . . . . . . . O 2 |
$$ ---------------------------------------[/go]
Black still manages a good position (and better than magnifying the ladder only once would have achieved), but still only a lead of about 2.5 points according to KataGo. Big by bot standards, but not quite as assuring on the human side with so much play left in the game.
Note that the ko capture of "a" is NOT sente for black - white will happily ignore it and play on the top side. This means that black will have the ko aji of white cutting at b hanging over his head. In fact, if you look at KataGo's prediction, the ownership prediction is curiously thinking that black will kill all of white's stones in the center. What's going on is that KataGo anticipates that as black tries to make good on a big moyo on the top and upper right, white can invade seemingly recklessly, including even moves that don't work locally. White expects to escalate the value of those fights until there are big ko threats in those fights, then start the ko at b, and get two moves in a row destroying black's top area, while black captures the center. So while black is leading, it will be a hard fight ahead.
Black of course can do better. By the time white has made the mistake of escaping from the ladder twice, black's best option is to just keep laddering for a while, with the plan to play the full broken ladder. White should not be running at all, but if white does, black's best option by far is not to attempt a ladder maker (because of the way white can resist as above), and just go with Lee Sedol's original play in the game.
- Click Here To Show Diagram Code
[go]$$B Best plan is the broken ladder
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O O X . . . . . . . . . . . . . |
$$ | . . . X O 2 3 . . . . . . . . . . . . |
$$ | . . . . 1 . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . X . |
$$ | . . . . . . . . . . . . . . X . X O . |
$$ | . . . . . . . . . . . . . X . X . O O |
$$ | . . . . . . . . . . O . O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]
But with one modification. Tentatively, if I've done my analysis with KataGo right, then if black really is trying to maximize points, the timing of the forcing move ideally should be a little different from when Lee Sedol played it, which was with 4 stones in the ladder. Below is the approximate point in the ladder where the forcing move should be played if white keeps running that puts white in the greatest bind in terms of sheer points.
- Click Here To Show Diagram Code
[go]$$W Around 8 stones in the ladder, plus or minus one, is the time to force
$$ ---------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . O X O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . X . . . . . |
$$ | . . . O . X . . . , . . . . . X . . . |
$$ | . . O O . . . . . . . . . . . . . . . |
$$ | . . O X X . . . . . . . . . . . . . . |
$$ | . . X O O X . . . . . . . . . . . . . |
$$ | . . . X O O X . . . . . . . . . . . . |
$$ | . . . . X 1 3 4 . . . . . . . . . . . |
$$ | . . . , . 2 5 7 . , . . . . . , . X . |
$$ | . . . . . . 6 . . . . . . . X . X O . |
$$ | . . . . . . . . . . . . . X . X . O O |
$$ | . . . . . . . . . . O 8 O X X O O O . |
$$ | . . . . . . . . . . . . O O O X X X O |
$$ | . . O . . . . . . . . X X X X O O X O |
$$ | . . . , . . . . . , . . O . . O O X . |
$$ | . . . O . . . . X . . . . X X X O X X |
$$ | . . . . . . . . . . . . . . . . O O X |
$$ | . . . . . . . . . . . . . . . . . O . |
$$ ---------------------------------------[/go]