This push might be too much from EdLee. Here are the moves I am currently considering:
- Click Here To Show Diagram Code
[go]$$Wc
$$ -----------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . O O . . |
$$ | . . . O . . . . . , . . . O . O X . . |
$$ | . . . . . . . . . . . . . f . X . . . |
$$ | . . . . . . . . . . . . e . . . X . . |
$$ | . . . . . . . . . . . e e . X . . . . |
$$ | . . . . . . . . . . . e e . . X O . . |
$$ | . . . . . . . . . . . e e . . X O . . |
$$ | . . . , . . . . . , . . e . . X O . . |
$$ | . . . . . . . . . . . . . . . . O . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . d O O O . O . . . |
$$ | . . . . . . . . . b c X X X O . . . . |
$$ | . . . . . . . . . a . . . . X O . . . |
$$ | . . . , . . . . . , . . . . X , . . . |
$$ | . . X . . . . . X . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ -----------------------------------------[/go]
White's last move is designed to gain even more strength against the Black group on the right in exchange for pushing Black along the 6th-line and for significantly stabilizing Black's position on the bottom. If Black simply responds at "a," "b," or "c," White would have to prove that the attack he could generate above would adequately compensate him for Black gains below. I am not convinced that White could do that. However, Black can also decide to tenuki, reinforcing the right group and attacking White's moyo on top. This would entail a local loss on the bottom for Black. If Black tenuki-ed a move ago, the loss would be very large. However, this might not be the case now.
Let's look at "a" through "f" in more detail:
1. "a"
- Click Here To Show Diagram Code
[go]$$Bc
$$ . . . . . . . . . . . . |
$$ . . . . O O O . O . . . |
$$ . . . . X X X O . . . . |
$$ . g 1 . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . B . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
This move works well with

. It also essentially eliminates various reductions White could try, such as at "g."
2. "b"
- Click Here To Show Diagram Code
[go]$$Bc
$$ . . . . . . . . . . . . |
$$ . . . . O O O . O . . . |
$$ . . 1 . X X X O . . . . |
$$ . . . . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . X . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
This move is greedier than "a" but leaves more aji for White to try to exploit.
3. "c"
- Click Here To Show Diagram Code
[go]$$Bc
$$ . . . . . . . . . . . . |
$$ . . . . O O O . O . . . |
$$ . . . 1 X X X O . . . . |
$$ . g h . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . B . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
This is the standard reply to White's push. However, it does not work particularly well with

, leaving White with a reduction at "g" and possibly even at "h."
4. "d"
- Click Here To Show Diagram Code
[go]$$Bc
$$ . . . . . . . . . . . . |
$$ . . . 1 O O O . O . . . |
$$ . . . . X X X O . . . . |
$$ . . . . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . B . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
This move is the aggressive response. White could cut, as indicated below, resulting in a chaotic fight. Here is how a related pro game continued:
- Click Here To Show Diagram Code
[go]$$Bcm27 Seo Neung Uk vs. Kim Dong Myeon(b), 1989
$$ -----------------------------------------
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . X . X X X . |
$$ | . . O , . . . . . , . . . . O O O X . |
$$ | . . . . . . . . . . . . . . . . O O . |
$$ | . . . . . . . . . . . . . . . O X . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . , . . . . . , . . . . . , . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . 7 . . 3 1 O O O . O . . . |
$$ | . . . . . . . . . . 2 X X X O . . . . |
$$ | . . . . 8 . . 6 . . 4 . . . X O . . . |
$$ | . . . # . . . . . , . . 5 . X , . . . |
$$ | . . j . . . . . i . . . . . . X . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ | . . . . . . . . . . . . . . . . . . . |
$$ -----------------------------------------[/go]
Notice that Black would have greatly benefited from having a stone at "i" as in the present game. However, also note that Black has a stone at 4-4 in the bottom-left corner which is preferable to a stone at 3-3 for the purpose of attacking White's group.
This type of play is completely antithetical to my initial plan of playing this game. However, if I can prove to myself that White would suffer losses from such a fight, I might go for this move.
5. "e"
- Click Here To Show Diagram Code
[go]$$Bc
$$ -------------------------
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . O O . . |
$$ . . , . . . O . O X . . |
$$ . . . . . . . . X . . . |
$$ . . . . . e . . . X . . |
$$ . . . . e e . X . . . . |
$$ . . . . e 1 . . X O . . |
$$ . . . . e e . . X O . . |
$$ . . , . . e . . X O . . |
$$ . . . . . . . . . O . . |
$$ . . . . . . . . . . . . |
$$ . . . . O O O . O . . . |
$$ . . . . X X X O . . . . |
$$ . . . . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . X . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
The extension from the right group at one of the points at "e" would completely stabilize the Black group and would also make White's influence in the center useless. If I were to play like this, I would first need to make sure that the damage I would suffer on the bottom of the board would not be too great. Here is a possible variation:
- Click Here To Show Diagram Code
[go]$$Bc
$$ -------------------------
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . O O . . |
$$ . . , . . . O . O X . . |
$$ . . . . . . . . X . . . |
$$ . . . . . e . . . X . . |
$$ . . . . e e . X . . . . |
$$ . . . . e 1 . . X O . . |
$$ . . . . e e . . X O . . |
$$ . . , . . e . . X O . . |
$$ . . . . . . . . . O . . |
$$ . . . . . . . . . . . . |
$$ . . 8 . O O O . O . . . |
$$ . . . 2 X X X O . . . . |
$$ . . 6 3 4 . . X O . . . |
$$ . . , 7 5 . . X , . . . |
$$ . X . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
This does not look too bad, especially since Black gets sente. Maybe White can play better, though.
6. "f"
- Click Here To Show Diagram Code
[go]$$Bc
$$ -------------------------
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . O O . . |
$$ . . , . . . O . O X . . |
$$ . . . . . . 1 . X . . . |
$$ . . . . . . . k . X . . |
$$ . . . . . . . X . . . . |
$$ . . . . . . . . X O . . |
$$ . . . . . . . . X O . . |
$$ . . , . . . . . X O . . |
$$ . . . . . . . . . O . . |
$$ . . . . . . . . . . . . |
$$ . . . . O O O . O . . . |
$$ . . . . X X X O . . . . |
$$ . . . . . . . X O . . . |
$$ . . , . . . . X , . . . |
$$ . X . . . . . . X . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ ------------------------[/go]
The idea behind this move is to remove aji at "k" after which Black can most likely get two eyes locally. A possible sequence to demonstrate:
- Click Here To Show Diagram Code
[go]$$Wc
$$ -------------------------
$$ . . . . . . . . . . . . |
$$ . . . . . . . . . . . . |
$$ . . . . . . . . O O . . |
$$ . . , . . 1 O . O X . . |
$$ . . . . . . X 4 X . . . |
$$ . . . . . 6 5 3 . X . . |
$$ . . . . . . 7 X . 2 . . |
$$ . . . . . 8 . . X O . . |
$$ . . . . . . . . X O . . |
$$ . . , . . . . . X O . . |
$$ . . . . . . . . . O . . |[/go]
White stones cannot escape.
As can be seen from the above, I have many options to consider and much reading to undertake. I'll have to sleep on it.