- Click Here To Show Diagram Code
[go]$$Wc Miai
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | . O O O O O O X X O O X . X X X O O X |
$$ | . O . O . . O O X X X . X . X X X X X |
$$ | . O O . O O X X X X . . X O X O O O O |
$$ | . . . . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X . O O O X X X O X O , . O . |
$$ | . . X . X . X X O O O O O O O O O . . |
$$ | X . . X X . . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X . . X X X O O . O O O O X X X |
$$ | O O O O . X X . X X O . . O . , . X . |
$$ | . . . O . X . . . . . O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O . . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
I claim, along with Berlekamp and Wolfe, that this position is strict miai. No matter who plays first, the result will be the same. Let me illustrate that with play.
- Click Here To Show Diagram Code
[go]$$Wc White plays first
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | 4 O O O O O O X X O O X . X X X O O X |
$$ | 6 O . O . . O O X X X . X . X X X X X |
$$ | 8 O O . O O X X X X . . X O X O O O O |
$$ | 0 . . . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X 7 O O O X X X O X O , . O . |
$$ | . . X . X 9 X X O O O O O O O O O . . |
$$ | X . . X X . . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X . . X X X O O . O O O O X X X |
$$ | O O O O . X X . X X O . . O . , . X . |
$$ | . . . O . X . . 5 3 1 O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O 2 . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
- Click Here To Show Diagram Code
[go]$$Wcm11
$$ ---------------------------------------
$$ | . X . X O O . . a a . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | X O O O O O O X X O O X . X X X O O X |
$$ | X O . O . . O O X X X . X . X X X X X |
$$ | X O O . O O X X X X . . X O X O O O O |
$$ | X 2 4 b O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X c O O O . . |
$$ | . X X X X O O O O X X X O X O , . O . |
$$ | . . X . X O X X O O O O O O O O O . . |
$$ | X . . X X d d . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X 3 e X X X O O . O O O O X X X |
$$ | O O O O 1 X X . X X O . . O . f . X . |
$$ | . . . O . X . g O O O O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . h O X . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
After

there are 8 simply gote left that gain 1 pt. for whoever takes it, which Black and White will share equally. Such a gote is called a
star, written *.
Now let's look at the result if Black plays first.
- Click Here To Show Diagram Code
[go]$$Bc Black plays first
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | 3 O O O O O O X X O O X . X X X O O X |
$$ | 5 O . O . . O O X X X . X . X X X X X |
$$ | 7 O O . O O X X X X . . X O X O O O O |
$$ | 9 . . . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X 8 O O O X X X O X O , . O . |
$$ | . . X . X 0 X X O O O O O O O O O . . |
$$ | X . . X X . . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X . . X X X O O . O O O O X X X |
$$ | O O O O . X X . X X O . . O . , . X . |
$$ | . . . O . X . . 6 4 2 O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O 1 . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
- Click Here To Show Diagram Code
[go]$$Bcm11
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | X O O O O O O X X O O X . X X X O O X |
$$ | X O . O . . O O X X X . X . X X X X X |
$$ | X O O . O O X X X X . . X O X O O O O |
$$ | X 1 3 . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X O O O O X X X O X O , . O . |
$$ | . . X . X O X X O O O O O O O O O . . |
$$ | X . . X X . . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X 4 . X X X O O . O O O O X X X |
$$ | O O O O 2 X X . X X O . . O . , . X . |
$$ | . . . O . X . . O O O O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O X . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
After 14 plays we reach the same position. In these sequences each play by the second player is necessary to preserve the miai.

(Although not necessarily unique.)
Except for the play on the bottom edge, each play is in a corridor that leads to a star. In the top left, Black has 6 plays before reaching the star, plus 1 play on the bottom side before doing so there. In the center there are 3 corridors, where White has 2 + 2 + 3 plays before reaching the stars. Each player has 7 plays before reaching the stars.
This problem is a fight for the last play that gains 1 pt., and in the top left corridor White has a local advantage in that fight. White can get the last local play unless Black makes 6 plays to reach the star, and then takes the star. The corridor is called a sextuple down star, written v6*. (Yes, it's a peculiar notation. Take your complaints elsewhere.

) The point is that before reaching the star White has 6 chances to take the last local play, which might be the last whole board play. By moving into the corridor Black takes away a potential last (whole board) move for White. You can see the similarity to filling outside liberties in a semeai.

Black does not necessarily take the star, because, while it is a potential last move for White on the whole board, it is also a potential last move for Black on the whole board. For why we say that the corridor is 6 v's plus *, see this page:
http://senseis.xmp.net/?CorridorInfinitesimals , which includes a discussion of ^^*.
In this problem White has a v6* + v = v7*. Black has ^^* + ^^* + ^3 = ^7**. Up(^) and down(v) are opposites, so v7 + ^7 cancel out. * + ** = ***. Two stars are miai, as we know, so they cancel out, leaving *. (The similarity to Nim heaps is not accidental.) As we see, when the ups and downs are all played out, there are actually 5 stars left. But 4 of them are miai, leaving one star, as advertised.

(BTW, you don't have to do the strange arithmetic. There are four corridors plus the down on the bottom edge, so playing them out will leave five stars.

) There are three stars elsewhere on the board, so everything is miai.

Note that if there had been, in effect, an odd number of stars on the board after

,

would have been a mistake, as it would have allowed White to take the last star. Instead, Black should have taken the star, allowing White to play the sente.

Edit: To underscore the miai, the second player can make a mistake by not preserving it, as in the next two diagrams.
- Click Here To Show Diagram Code
[go]$$Wc Black mistake
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | . O O O O O O X X O O X . X X X O O X |
$$ | . O . O . . O O X X X . X . X X X X X |
$$ | . O O . O O X X X X . . X O X O O O O |
$$ | . . . . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X 1 O O O X X X O X O , . O . |
$$ | . . X . X 3 X X O O O O O O O O O . . |
$$ | X . . X X 4 . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X . . X X X O O . O O O O X X X |
$$ | O O O O 5 X X . X X O . . O . , . X . |
$$ | . . . O . X . . . . . O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O 2 . . . X X O . . O O X . |
$$ ---------------------------------------[/go]

is a mistake. Maybe Black thought

was sente.
- Click Here To Show Diagram Code
[go]$$Bcm6
$$ ---------------------------------------
$$ | . X . X O O . . . . . . . X X O . O . |
$$ | . X . . X O O O O X X . X X O . . O . |
$$ | X X X X X O . X O O X . O X O O O . O |
$$ | 1 O O O O O O X X O O X . X X X O O X |
$$ | 3 O . O . . O O X X X . X . X X X X X |
$$ | 5 O O . O O X X X X . . X O X O O O O |
$$ | 7 9 0 . O X O O O X X . X . X O X X O |
$$ | O O O . O . . O . X . X X X X X X O O |
$$ | X X O O O O O . O X . . X . O O O . . |
$$ | . X X X X O O O O X X X O X O , . O . |
$$ | . . X . X O X X O O O O O O O O O . . |
$$ | X . . X X X . . X X O . O X X X O O O |
$$ | O X X . . X X X . X O . . O O X X X X |
$$ | O X . X X O X . X X O O . O . O O O X |
$$ | O X X X 2 . X X X O O . O O O O X X X |
$$ | O O O O O X X . X X O . . O . , . X . |
$$ | . . . O . X . . 8 6 4 O . . O X X X X |
$$ | . O . O O X X X X X X O O . O O X . . |
$$ | . . O . . O X . . . X X O . . O O X . |
$$ ---------------------------------------[/go]
Black's mistake allows White to get the last play with

. There are six stars left on the board.